A Survey on Soft Subspace Clustering
نویسندگان
چکیده
Subspace clustering (SC) is a promising technology involving clusters that are identified based on their association with subspaces in high-dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been studied extensively and are well accepted by the scientific community, SSC algorithms are relatively new. However, as they are said to be more adaptable than their HSC counterparts, SSC algorithms have been attracting more attention in recent years. A comprehensive survey of existing SSC algorithms and recent developments in the field are presented in this paper. SSC algorithms have been systematically classified into three main categories: conventional SSC (CSSC), independent SSC (ISSC), and extended SSC (XSSC). The characteristics of these algorithms are highlighted and potential future developments in the area of SSC are discussed. Through a comprehensive review of SSC, this paper aims to provide readers with a clear profile of existing SSC methods and to foster the development of more effective clustering technologies and significant research in this area.
منابع مشابه
A Robust k-Means Type Algorithm for Soft Subspace Clustering and Its Application to Text Clustering
Soft subspace clustering are effective clustering techniques for high dimensional datasets. Although several soft subspace clustering algorithms have been developed in recently years, its robustness should be further improved. In this work, a novel soft subspace clustering algorithm RSSKM are proposed. It is based on the incorporation of the alternative distance metric into the framework of kme...
متن کاملSubspace Clustering, Ensemble Clustering, Alternative Clustering, Multiview Clustering: What Can We Learn From Each Other?
Though subspace clustering, ensemble clustering, alternative clustering, and multiview clustering are different approaches motivated by different problems and aiming at different goals, there are similar problems in these fields. Here we shortly survey these areas from the point of view of subspace clustering. Based on this survey, we try to identify problems where the different research areas ...
متن کاملA Soft Subspace Clustering Algorithm with Log-transformed Distances
Entropy weighting used in some soft subspace clustering algorithms is sensitive to the scaling parameter. In this paper, we propose a novel soft subspace clustering algorithm by using log-transformed distances in the objective function. The proposed algorithm allows users to choose a value of the scaling parameter easily because the entropy weighting in the proposed algorithm is less sensitive ...
متن کاملRegularized soft K-means for discriminant analysis
Traditionally unsupervised dimensionality reduction methods may not necessarily improve the separability of the data resided in different clusters due to ignorance of the inherent relationship between subspace selection and clustering. It is known that soft clustering using fuzzy c-means or its variants can provide a better and more meaningful data partition than hard clustering, which motivate...
متن کاملSoft Subspace Clustering for High-Dimensional Data
High dimensional data is a phenomenon in real-world data mining applications. Text data is a typical example. In text mining, a text document is viewed as a vector of terms whose dimension is equal to the total number of unique terms in a data set, which is usually in thousands. High dimensional data occurs in business as well. In retails, for example, to effectively manage supplier relationshi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 348 شماره
صفحات -
تاریخ انتشار 2016